skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kidambi, Adithya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fluidically actuated soft robotic devices have attracted increasing interest due to their ability to provide benefits over traditional rigid systems in biomedical applications such as minimally invasive surgery, rehabilitative devices, and prosthetics. Unfortunately, challenges remain for controlling the fluidic operations of such systems, driving a critical need for new classes of fluidic circuit elements. Here we explore the use of “Liquid Crystal Display (LCD)” 3D printing—a low-cost vat photopolymerization (VPP) approach—to additively manufacture “normally closed” fluidic transistors with operations analogous to their electronic counterparts. Specifically, we leverage an “additive assembly” strategy wherein part components are printed separately and assembled post hoc. Experimental results for higher source pressure magnitudes revealed that in the absence of an applied gate pressure, the element obstructed source-to-drain fluid flow—i.e., normally closed behavior—however, by applying a gate pressure of ≥25 kPa, the element permitted source-to-drain fluid flow. Thus, this work establishes the efficacy for VPP-based additive assembly of fluidic circuit elements, which could help to advance and democratize fluidic circuit-based soft robotic technologies. 
    more » « less
    Free, publicly-accessible full text available June 29, 2026